Мини-ТЭС – выгодный подход к построению современных систем электро- и теплоснабжения зданий и сооружений
Многие объекты нуждаются в постоянном снабжении теплом, холодом и электроэнергией. Решением этой проблемы может стать установка мини-ТЭС. Такой агрегат позволяет обеспечить независимость потребителя от централизованных систем электроснабжения и решить проблемы с перебоями электроэнергии. Для объектов, как строящихся, так и уже находящихся в эксплуатации, установка компактной и экономичной электростанции возможна.
Главным преимуществом мини-ТЭС является возможность ее территориальной близости к потребителю тепловой энергии. Это позволяет отказаться от использования ненадежных теплосетей.
Устройство автономных энергоцентров
Автономные энергоцентры, небольшие устройства для производства электричества и тепла, в России становятся всё популярнее. Они используют технологию когенерации или тригенерации, которая позволяет получать электричество и тепло одновременно.
Тригенерационные устройства, которые, помимо электричества и тепла, производят ещё и холод, пока что в России почти не используются.
Структурно, мини-ТЭС включает в себя ряд узлов: двигатель, электрогенератор, теплообменники, система принудительного охлаждения (радиатор), система отвода газов, распределительный щит и система автоматики и контроля.
Двигатель является основным элементом, который заставляет вращаться вал электрогенератора. Именно электрогенератор превращает кинетическую энергию в электрическую. Двигатель, в свою очередь, выделяет тепло, которое уже при помощи системы теплообменников подводится к системе отопления или горячего водоснабжения.
Дополнительный излишек тепла можно использовать при помощи системы принудительного охлаждения. Газ, который образуется в процессе сжигания топлива, выводит система отвода газов. Управление работой мини-ТЭС осуществляется с помощью распределительного щита и системы автоматики и контроля, которые помещаются в специальных диспетчерских. Мониторинг работы мини-ТЭС также возможен удаленно через Интернет.
Существует несколько типов энергоустановок для мини-теплоэлектростанций (мини-ТЭС), включая паровые турбины, газотурбинные установки и генераторы с утилизацией тепловой энергии. Рассмотрим каждый вид более подробно.
Паровые турбины могут быть двух типов: конденсационные и противодавленческие. Конденсационные паровые турбины используются, когда основная цель - производство электричества. Однако, для того чтобы также получить тепловую энергию, в конденсационных паровых турбинах добавляют функцию отбора пара. Выпустившись, частично в конденсатор и частично в систему отопления, пар максимизирует использование дополнительных источников энергии. Однако, недостатком конденсационных паровых турбин является их инертность.
Противодавленческие паровые турбины перерабатывают отработанный пар для отопления. В результате возможно одновременное производство электрической и тепловой энергии. Последовательное использование идентичных процессов и деталей гарантирует общий КПД для мини-ТЭС на паровой турбине до 80%. Технологически решение наиболее сложное и, соответственно, дорогое.
Газотурбинные установки с водяной или паровой утилизацией используют выделяющееся тепло для отвода его к потребителю. Оптимальная эффективность оборудования достигается на мощностях от 5 МВт и выше (до 300 МВт), некоторые модели позволяют работать в диапазоне 1-5 МВт. Общий КПД для мини-ТЭС на газовой турбине – 65-87%.
Газопоршневые, газодизельные и дизельные генераторы используются в когенераторных установках, позволяющих получить общий КПД для мини-ТЭС 70-92%. Наиболее широко распространены газопоршневые агрегаты единичной мощностью от 1 до 9 МВт. В связи с ограничением общей мощности энергоцентра на укладку не более 50-80 МВт, в комплекс включаются несколько агрегатов параллельно. В результате удельные расходы на строительство и эксплуатацию минимальны, однако aгрегаты, как правило, требуют периодического сервиса на каждые 1000-2000 моточасов.
Топливо для Мини-ТЭС: газовые и твердые виды
Газовое топливо является одним из самых доступных и экологически безопасных источников энергии для ТЭС. При этом природный газ наиболее часто применяется в качестве газового топлива. Кроме того, существуют и другие виды газа, в том числе сжатый, попутный нефтяной, биогаз производимый на очистных сооружениях, свалках, химических и других производствах. Эти виды газа также годятся для использования в качестве топлива для Мини-ТЭС.
С другой стороны, дизельное топливо является менее экологически чистым и более дорогим видом топлива, и может использоваться как запасной источник топлива, либо в случаях, когда использование газа не представляется возможным.
В случае отсутствия доступных альтернативных видов топлива, для Мини-ТЭС могут использоваться твердые виды топлива, такие как древесина, уголь, пилеты и т.п.
Особенности и разновидности размещения автономных систем тепло- и электроснабжения
Концепция размещения мини-ТЭС остается актуальной для случаев, когда:
- присоединение к электрическим сетям не выгодно по причине огромных затрат;
- нужда в непрерывной поставке электроэнергии и тепла;
- требуется высокий уровень надежности электроснабжения;
- производство требует большого количества энергии.
Означает ли это, что мини-ТЭС может быть дополнительным источником электро- и теплоснабжения, коих нет в отдаленных регионах или же это альтернатива присоединению к сети? На этот вопрос ответить не однозначно. Стоит заметить, что энергетические системы как мини-, так и макро-ТЭС имеют свои конструктивные особенности и различные методы размещения, которые следует рассмотреть.
Мини-ТЭС может быть размещена двумя способами:
Открытый тип размещения
Используется, если необходимо вводить энергокомплекс в эксплуатацию в кратчайшие сроки. Оборудование устанавливается в блочно-модульных контейнерах и помещается на открытых площадках. Самый существенный плюс такого размещения - высокая мобильность.
Закрытый тип размещения
Подходит в случае, когда имеется свободное помещение или возможность построить специальное помещение для энергетического комплекса.
Тема малой энергетики и ее актуальность для России подтверждаются ростом числа мини-ТЭС в последние 20 лет. Более тысячи объектов этого вида в стране предоставляют потребителю множество преимуществ.
Первое и наиболее важное преимущество - это качество и стабильность энергоснабжения, которые обеспечиваются мини-ТЭС с помощью постоянного напряжения и заданных параметров теплоснабжения.
Одной из других важных проблем, решаемых этими станциями, является совместное производство электро- и теплоэнергии, что является примером современного подхода к бизнесу. При этом благодаря использованию ресурсов, минимизируются негативные последствия для окружающей среды.
Одним из больших преимуществ, которыми может наслаждаться потребитель, является низкая стоимость вырабатываемой энергии. При использовании 0,3 куб.м газа в час потребитель может получить 1 кВт электроэнергии и около 2 кВт тепла в час, при этом существенно экономится на подключении к традиционной электросети.
Экономия не ограничивается единичным платежом за энергию, но преимущества также поощряют снижение зависимости от постоянного роста тарифов на электроэнергию и тепло. Расходы на мини-ТЭС окупаются в течение 2-3 лет благодаря компактности мини-станции и до 12 электроагрегатов в ее составе, каждый мощностью 1000-9000 кВт.
Этот тип энергоснабжения также обладает другими преимуществами, такими как экономия на коммуникациях, благодаря близости к объекту энергоснабжения, удобство размещения, быстрая ввода в эксплуатацию, надежность и управление работой полностью автоматизировано.
Безусловно, использование мини-ТЭС становится все более популярным и привлекательным для потребителя в России, и это оправдано множеством преимуществ, которые он предлагает.
Строительство мини-ТЭС является довольно сложным и многоступенчатым процессом, включающим в себя ряд важных этапов. Чтобы создание и организация мини-ТЭС проходили успешно, необходимо уделить внимание каждой стадии проекта.
Первым этапом является предпроектная проработка и заключение договоров. На данном этапе происходит выявление целей и задач проекта, определение объема работ, а также заключение договоров с поставщиками и подрядчиками.
Далее приступают к проектированию, на этом этапе разрабатываются макеты и чертежи будущей мини-ТЭС. Важным моментом является заказ и производство оборудования, исходя из полученных на этом этапе результатов.
После проектирования и производства оборудования необходима его транспортировка на площадку, где будет происходить строительство объекта. На этом этапе осуществляется монтаж оборудования и строительство площадки и сетей.
Завершающие этапы, это пусконаладочные работы, ввод в эксплуатацию, обучение персонала и сервисное обслуживание.
Для сокращения времени и снижения затрат, можно заказать строительство мини-ТЭС «под ключ», объединив все этапы в одном договоре с одним подрядчиком. Этот подход позволяет сократить объем документации и ускорить сроки реализации проекта.
Инвестиции в строительство собственной мини-ТЭС - вариант, который стоит рассмотреть. Мощность автономного энергоцентра от 1 до 30 МВт включительно «под ключ» обойдется примерно в 1000 евро за кВт×ч. Это сравнимо со стоимостью подключения к внешним энергетическим сетям, а в некоторых случаях может быть даже дешевле. Сам производительный процесс также более экономичен, себестоимость электроэнергии, вырабатываемой мини-ТЭС, составляет всего 1,80 руб. за кВт×ч, в то время как в компаниях, занимающихся внешним энергоснабжением, цена колеблется в районе от 3 до 5 руб./кВт×ч. Более того, при этом имеется второй ценный бонус - получение горячей воды, исходя из количества произведенной электроэнергии. Каждая Гкал тепла стоит не менее 800 рублей. В результате, проект строительства собственной мини-ТЭС окупается в период от 2 до 3 лет, несмотря на необходимость реконструкции инженерных инфраструктурных систем.
Фото: freepik.com